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Abstract— Cross-view image geo-localization is a challenging
task of estimating the geospatial location of a street-view image by
matching it with a database of geotagged aerial/satellite images,
and vice versa. Compared to existing CNN-based approaches that
attempt to generate discriminative representations in a single
step for this task, in this article, we instead advocate endowing
the network with the capability of progressive self-correcting.
Toward this target, we propose a novel step-adaptive iterative
refinement network (SIRNet), which decomposes the complex
learning process into several refinement steps while adapting
the refinement steps specifically for each input. Specifically, the
SIRNet takes the output of the backbone as a rough network
prediction and iteratively refines it via an iterative refinement
module (IRM). The IRM cascades several refinement blocks
sharing the same structure for progressive self-correcting. For
each refinement block, the goal is to improve the output of
the previous refinement block under the guidance of height-
wise context. In this way, the IRM is capable of improving
the rough network prediction step by step, and the refined
features are increasingly focused on more discriminative scene
regions as they are iteratively refined. In addition, considering
different characteristics of input images, we devise an adaptive
step estimation (ASE) mechanism, which enables our SIRNet to
adapt the number of refinement steps to each input automatically.
Concretely, the ASE is performed by comparing features at adja-
cent refinement steps, estimating whether the next step brings
improvements, and finally making a halting decision at each
refinement step. With the ASE, our SIRNet becomes a dynamic
architecture that considers different characteristics of the inputs
when performing the iterative refinement. Extensive experiments
demonstrate that our SIRNet performs favorably against the
state-of-the-art methods on the CVUSA and the CVACT datasets.
Furthermore, quantitative and qualitative experimental results
demonstrate our approach’s wide applicability, impressive gen-
eralization ability, and robustness.

Index Terms— Adaptive estimation, convolutional neural net-
work, cross-view geo-localization, image retrieval, iterative
refinement.

I. INTRODUCTION

W ITH the development of aerospace technology and
sensor technology, researchers can easily acquire large
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Fig. 1. Demonstration of cross-view geo-localization.

amounts of high-quality remote sensing images, which reflect
the state of the ecological environment and traces of human
activities [1]. This provides a new clue to solving the
image-based geo-localization, which aims to estimate the
geo-location of an image by comparing it against geo-tagged
database images [2], [3]. Recently, cross-view geo-localization
(also known as ground-to-aerial geo-localization) has become
an attractive proposition for addressing the image-based geo-
localization. Specifically, as depicted in Fig. 1, cross-view geo-
localization aims to determine the location of a street-view
image by matching it with a series of geo-tagged aerial images
covering the same or wider region, and vice versa. Cross-
view geo-localization is significantly challenging for two main
reasons. On the one hand, viewpoints between ground and
aerial images change drastically, which results in significant
appearance and geometric differences between ground and
aerial images. On the other hand, there are visual interferences
in ground images or aerial images, such as variable illumi-
nation and transient occlusions (e.g., pedestrian and cars).
To overcome these difficulties, existing works typically treat
this task as an image-retrieval task, whose key is to generate
discriminative representations to distinguish between similar-
looking locations.

Significant efforts have been made by incorporating atten-
tion mechanisms [5], [7], specialized loss functions [7], [8],
[9], [10], [11], contextual information [12], or orientation
knowledge [6], [13]. However, as shown in Fig. 2, the state-
of-the-art methods still struggle to recognize discriminative
regions accurately. This makes us recognize that it remains
difficult to infer discriminative regions in a single forward
pass due to large viewpoint variance and visual interferences.
By contrast, humans are better at handling complex tasks in
steps and good at self-reflection and self-correcting. Inspired
by this observation, we propose a novel step-adaptive iterative
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Fig. 2. Visualization of generated feature maps on the CVUSA dataset [4] comparing our proposed SIRNet with two state-of-the-art models, i.e., SAFA [5]
and DSM [6]. For a fair comparison, we warp aerial images using polar transform as in [5] and [6], a simple trick that geometrically aligns ground and aerial
images. “GT” is short for ground truth. We indicate regions with higher activation values in yellow, and for ease of reference, we box the discriminative scene
regions in green.

refinement network (SIRNet) capable of progressive self-
correcting. Our method iteratively recognizes discriminative
regions, given the rough prediction output from the backbone
network as priors. Since the rough prediction is an impor-
tant clue about the rough position of discriminative regions,
learning to iteratively refine the predicted results enables
the network to leverage knowledge in previous iterations.
As a result, the network is allowed to “make mistakes”
(i.e., focusing on undiscriminating regions) at primary stages,
without having to make accurate predictions in a single shot,
as long as it can gradually adjust and correct these mistakes.
As shown in Fig. 2, our network incorporated with the iterative
refinement mechanism exceeds in recognizing discriminative
regions.

To support the iterative self-correction, we need to address
two key issues. First, which cues should be organized to
assist in self-correction, and how do they improve the rough
prediction? Second, as we mentioned above, the self-correction
is performed step by step, so how to determine the number
of self-correction steps? In response to the first problem,
we devise an iterative refinement module (IRM) with a cascade
of refinement blocks (each for a single refinement step) sharing
the same structure without sharing their weights. At each
refinement step, the refinement block aggregates height-wise
contexts that indicate the context of horizontally divided
feature regions to assist in self-correction. Afterward, the
context-guided self-correction is performed by reconsidering
which features are more discriminative than others and refining
the input features accordingly. With the IRM, the SIRNet is
capable of improving predicted results at the region level,
given only image-level supervision. For the second problem,
we further propose to adapt the iterative refinement steps
to each input sample. We empirically find that using static
iterative refinement steps, i.e., applying the fixed number of
refinement steps regardless of inputs will limit the model’s
performance because each image has its characteristics. There-
fore, we propose an adaptive step estimation (ASE) mecha-
nism to configure the refinement steps conditioned on each
input. Specifically, we make a halting decision after each
refinement step at test time. The SIRNet terminates the refine-
ment process once a refined feature map is discriminative
enough for cross-view geo-localization task (judged by a
softmax confidence). Otherwise, the network continues the
refinement until the maximum number of refinement steps is
reached. Two examples depict this procedure in Fig. 3. Our

SIRNet incorporated with the IRM and the ASE is capable
of recognizing discriminative regions while suppressing visual
interferences step by step.

To summarize, our contributions are threefold.

1) Instead of directly learning representations in a single
step, we devise an iterative refinement approach, i.e., the
IRM, which endows the network with the capability of
progressive self-correcting. The IRM takes the output
of the backbone as a rough prediction and refines it
iteratively under the guidance of scene context. Due
to its iterative and self-correcting nature, our proposed
SIRNet can progressively highlight more discriminative
scene regions with only image-level supervision.

2) We devise an ASE mechanism that adaptively estimates
the number of iterative refinement steps specifically
for each input sample. With the ASE, our SIRNet
becomes a dynamic architecture that considers different
characteristics of the input when performing iterative
self-correcting, thus gaining remarkable representation
capability.

3) We compare the SIRNet with the state-of-the-art
methods on various cross-view geo-localization tasks,
including standard, fine-grained and few-shot cross-view
geo-localization. Quantitative and qualitative ablation
studies demonstrate the advantages of our proposed
method in terms of effectiveness and generalization
ability.

II. RELATED WORKS

A. Cross-View Geo-Localization

Finding feature correspondence between ground and aerial
images is extremely difficult due to large domain gap across
views and visual interferences. Existing methods developed
for this task can be divided into two categories.

The main idea of the first category is to bridge the
cross-view domain gap. For example, CVM-Net [8], [14]
employs a NetVLAD technique [3] to project cross-view
features into a shared space where they are comparable.
CVFT [15] achieves this goal by applying an optimal transport
algorithm to transport ground features to aerial feature space.
Although promising, the CVM-Net and the CVFT bridge
the domain gap purely based on image content without con-
sidering geometric priors between ground and aerial views.
To address this problem, Polar-SAFA [5] and DSM [6] use a
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Fig. 3. Our proposed SIRNet iteratively refines the rough predictions output from the backbone with refinement steps conditioned on each input.
(Left) Two-step iterative refinement process. (Right) Three-step iterative refinement process. The visualization examples demonstrate that the SIRNet is
capable of highlighting discriminative regions (left and right) while suppressing transient occlusions (right) step by step. For ease of reference, we box
discriminative regions and transient occlusions in green and red, respectively.

polar transform algorithm to warp aerial images so that they
are geometrically aligned with ground images. Nevertheless,
the polar transform does not consider the scene content and
therefore cannot fully align the two domains. As a result,
existing methods [5], [6] still have difficulty in recognizing
discriminative scene objects, even if they apply the polar
transform, as shown in Fig. 2. To achieve both semantic
and geometric alignment, [16] and [17] introduce conditional
GANs [18] to synthesize a corresponding aerial image from a
ground query (or vice versa). However, since the cross-view
synthesis [19], [20] is an ill-posed problem and is highly
challenging, the synthesized images are always granulated
and lack details, which hinders the domain alignment. This
article does not intend to push complete alignment of the
cross-view domains but to find feature correspondence by
recognizing discriminative scene objects. Our method, there-
fore, can be well combined with the first category of works.
As the experiments show, incorporating our proposed module
with the first category of method consistently improves their
performance.

The goal of the second category is to generate represen-
tations that are discriminative enough to distinguish between
similar-looking images. Some efforts have been made toward
this goal by designing specialized metric learning techniques
to train models developed for cross-view geo-localization.
Hu et al. [8] develop a weighted soft-margin loss based on the
triplet loss [21], [22] to speed up training convergence. Then a
hard sample mining mechanism [9], [10], [11] and a binomial
loss [11] are further introduced to improve the performance
of the weighted soft-margin loss. To effectively locate hard
examples, Cai et al. [7] propose a hard exemplar reweighting
loss that adaptively allocates different weights to triplets based
on their difficulty. Recently, Rodrigues and Tani [23] design a
data augmentation technique to produce more training samples

for this task by keeping or removing scene objects based on
their segmentation masks.
In addition to specialized metric learning techniques, several
powerful CNN-based models are developed. Sun et al. [9]
and Zhu et al. [10] cascade a ResNetX backbone with a
capsule network [24] to model spatial feature hierarchies
and enhance representation capability. Inspired by geometric
cues, Liu and Li [13] incorporate orientation embeddings to
CNN, endowing the network with the concept of orientation.
However, this method requires the orientation knowledge to be
provided, which may not be available in practice. To jointly
obtain orientation and localization information, Shi et al. [6]
propose a dynamic similarity matching method by sliding
ground features along aerial features. Despite the effectiveness
of these orientation-based methods, their performances are still
limited when the network fails to focus on discriminative scene
objects. To overcome this problem, SAFA [5] introduces a
multihead spatial attention method to highlight salient scene
regions. Cai et al. [7] further explore both spatial and channel
attention for better performance. Nevertheless, we empirically
observe that these attention-based methods struggle to grasp
discriminative features using a single forward pass due to
the large viewpoint variance. In contrast, our SIRNet adopts
an iterative self-correcting scheme, which decomposes the
learning process into multiple refinements and enables the
network to make more accurate predictions step by step.
Recently, Wang et al. [12] adopts a square-ring feature par-
tition strategy to take advantage of contextual information
for geo-localization. However, this method simply aggregates
all information of neighbor areas as an image representa-
tion, which may introduce noises. Contrastively, our SIRNet
aggregates height-wise context for progressive self-correcting,
which exploits contextual information while highlighting dis-
criminative features.
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Fig. 4. Overview of our SIRNet, which consists of four components: the backbone networks, the IRMs (highlighted in green), the aggregation modules (gray
triangle), and the ASE mechanisms (highlighted in purple). Specifically, the IRM contains T cascaded refinement blocks to improve the rough predictions
output from the backbone step by step, and the structure of a single refinement block at step T is depicted on the right. The ASE, which is used solely at
inference, enables the network to automatically adapt the number of refinement steps to each input query by making halting decision at each refinement step.

Some works have recently explored different variants
of cross-view geo-localization tasks under drone-based set-
ting [25], one-to-many setting [26], and orientation unaligned
setting [11]. In this work, our proposed method focuses mainly
on the standard setting, i.e., matching a ground panorama with
a corresponding satellite image.

B. Iterative Refinement

The idea of iterative refinement is first proposed for human
pose estimation [27], where body structure is modeled by
learning a hierarchical feature encoder with a top-down iter-
ative feedback mechanism. Iterative refinement mechanism
has also been used for semantic segmentation [28], instance
segmentation [29], image synthesis [30], [31], and object
detection [32], [33]. To the best of our knowledge, we are
the first to introduce an iterative refinement scheme for cross-
view geo-localization. Moreover, our method differs notably
from previous works in two aspects. First, most existing
methods require pixel-level annotation to assist in refinement,
which is costly and may not be available in practice. Instead,
our approach requires only image-level supervision. Second,
we are also the first to propose an ASE mechanism for such
an iterative refinement framework. This makes our network
a dynamic architecture and perform better than its static
counterpart.

III. METHODOLOGY

In this section, we present the SIRNet, a novel step-adaptive
iterative refinement method for cross-view geo-localization.
We first give an overview of the proposed SIRNet in Fig. 4
and Section III-A. Then two key components of our model,

i.e., the IRM and the ASE mechanism, are described in
Sections III-B and III-C, respectively.

A. Network Overview

Let I g ∈ R
H g×W g×3 and I a ∈ R

H a×W a×3 denote a ground
image and an aerial image, respectively, where H and W are
the spatial dimensions of the image. In line with [5] and [6],
we apply the polar transform, a simple trick that geometrically
aligns ground and aerial images by warping the aerial images,
as shown in Fig. 4. The warped aerial images are denoted as
Î a ∈ R

H g×W g×3. To extract ground and aerial representations
separately, we adopt a Siamese-like network architecture with
two independent branches of the same structure. For simplicity,
we omit the superscript g or a in the later descriptions if not
specified.

As shown in Fig. 4, the SIRNet consists of four important
components: a backbone network, an IRM, several aggregation
modules, and an ASE mechanism. We use the first eight layers
of VGG16 [34] as the backbone network to extract an inter-
mediate feature map f0 ∈ R

Hin×Win×Cin , where Hin, Win, and
Cin are the height, width, and the number of feature channels,
respectively. To generate more discriminative representations,
we incorporate the IRM (described in Section III-B) at the end
of the backbone network. The IRM regards the intermediate
feature map f0 as a rough network prediction and refines it
progressively. Following that, we attach feature aggregation
modules sharing their weights with all the refinement blocks
(the structure of the aggregation module can be found in
Section III-B). This allows the network to produce image
representations at any refinement step, thus facilitating the
ASE at inference. At inference, the ASE method adaptively
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determines the number of refinement steps for each input
sample by making termination decisions at every refinement
step (elaborated in Section III-C).

B. Iterative Refinement Module

The ultimate target of the SIRNet is to generate discrimi-
native ground and aerial representations. However, viewpoint
variations and visual interferences pose great challenges.
Motivated by the human perception process, as mentioned
before, we propose an IRM to address these challenges by
endowing the network with the capability of progressive self-
correcting. In the following, we first illustrate the overall
iterative refinement framework. Then, we elaborate on the
internal structure of each refinement block.

1) Iterative Refinement: As shown in Fig. 4, the proposed
IRM embodies the idea of progressive self-correcting by
cascading T refinement blocks, which share the same structure
without weight sharing. For each refinement block, the goal is
to improve the output of the previous block, such that the IRM
is capable of improving the rough network prediction, i.e., f0,
step by step (i.e., block by block). One natural choice for
refinement is to supervise the IRM by pixel-level annotations
of discriminative regions. Yet, preparing pixel-level annota-
tions is very expensive. Inspired by the fact that context plays a
crucial role in resolving visual ambiguity or incompleteness in
the human perception system [35], we sidestep this problem by
self-correcting the rough prediction with the aid of region-level
scene context.

2) Single Refinement Block: Formally, given the input
of the t th refinement block, i.e., f input

t ∈ R
Hin×Win×Cin (t ∈

{1, . . . , T }), the refinement block firstly aggregates context
features [see (1)] to assist in self-correcting. Afterward, the
refinement map is generated by reconsidering which channels
are critical in the region based on its context [see (2)].
Following that, we acquire the refined feature at step t
by the element-wise multiplication of refinement map and
f input
t [see (3)]. Fig. 4 depicts this procedure. For a better

understanding, we formulate this process as follows:
Ct = poolh

(
f input
t

)
(1)

At = Dup
(
convt

1×1

(
convt

3×3

(
convt

3×3(Ct )
)))

(2)

ft = Drop
(

convt
3×3

(
At � f input

t

))
. (3)

In (1), poolh denotes an average pooling operation with
1 × Win pooling kernel. We term Ct ∈ R

Hin×1×Cin as a
height-wise context because each value of Ct represents the
context of a horizontally divided region. Due to the structural
nature of ground images (see Fig. 5), where each row of a
scene image has a notably different object distribution [36],
the height-wise context is more informative and discriminative
for self-correction. In the experiment, we further discuss and
compare three kinds of context, i.e., height-wise, width-wise,
and local-wise contextual information. In (2), convt

k×k denotes
a convolutional layer with kernel size k × k followed by
a non-linear activation function, i.e., ReLU, at refinement
step t . Dup indicates the duplicate operation used to ensure
that the shape of At is the same as that of f input

t . In this way,

Fig. 5. Each part of an image divided into three horizontal sections has a
significantly different object distribution from each other. For example, roads
lie mainly in the lower region.

the generated At can be regarded as a refinement map for
self-correcting. In (3), � denotes the Hadamard product, and
Drop indicates the dropout operation [37].

3) Aggregation Module and Dense Connectivity: At the end
of each refinement block, we attach an aggregation module,
as shown in Fig. 4. In line with [6], each aggregation module
consists of three convolutional layers, reducing the height and
channels of the feature maps but maintaining their width.
By flattening the aggregated feature map, we acquire an
image descriptor at step t , i.e., Ft , with the dimension of
4 × 16 × 64 = 4096. It is worth mentioning that attaching the
aggregation modules to all the refinement blocks enables the
network to produce image representations at any refinement
step, thus facilitating the ASE (elaborated in Section III-C).
Nevertheless, as pointed out in [38], the introduction of
aggregation modules at early refinement steps can harm the
final aggregation module. Therefore, following the suggestion
in [38], we densely connect each refinement module with
all subsequent refinement modules to mitigate this problem.
As shown in Fig. 4, for t > 2, the input f input

t of the tth
refinement block is gained by densely connecting the outputs
of all subsequent refinement blocks using concatenation and
convolution operations, and for t ≤ 2, f input

t = ft−1.

C. Adaptive Step Estimation

In such an iterative refinement framework, a natural question
is: how do we determine the refinement steps? Naturally, one
can statically set the number of refinement steps to 3 or 4 [30],
[39], [40]. However, we observe that setting a fixed number of
refinement steps limit the model’s performance because input
images have different characteristics. Therefore, we propose an
ASE algorithm that allows the network to adapt the number
of refinement steps to each input.

1) ASE Algorithm: Instead of setting a fixed number of
refinement steps, as shown in Fig. 4, we set the maximum
number of refinement steps (i.e., the number of refinement
blocks T ). The ASE is performed only at inference by making
a halting decision at every refinement step until the refinement
is terminated or the maximum number of refinement steps
is reached. Specifically, at each step, the SIRNet estimates
whether the next refinement step brings improvement by
comparing representations output from adjacent refinement
steps (short for adjacent representations in the following) in
terms of their softmax confidences. If the refined features
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are discriminative enough for the task, the network outputs
an image representation at the current step. Otherwise, the
network continues with the next refinement step until the
maximum number of refinement steps is reached.

Algorithm 1 Adaptive Step Estimation

Input: Intermediate features of a ground query f g
0 ;

Database D = {(Fa1
1 , . . . , FaN

1 ), . . . , (Fa1
T , . . . , FaN

T )};
Maximum number of refinement steps T ;
Output: Ground image descriptor Fg;

1 for t ← 1 to T − 1 do
// Extract adjacent image descriptors

2 Get {Fg
t , Fg

t+1};
// Compute L2 distances

3 Dt ← [d(Fg
t , Fa1

t ), . . . , d(Fg
t , FaN

t )];
4 Dt+1 ← [d(Fg

t+1, Fa1
t+1), . . . , d(Fg

t+1, FaN
t+1)];

// Compute softmax confidences
5 {Ct } ← −so f tmax(nsmallest (2, Dt))[0];
6 {Ct+1} ← −so f tmax(nsmallest (2, Dt+1))[0];
7 if Ct > Ct+1 then

// Terminate
8 return Fg

t ;
9 end

10 end
11 return Fg

T ;

Algorithm 1 shows the detailed ASE procedure as pseudo
code. First, starting from the first refinement stage, i.e., t = 1,
we extract the image descriptors {Fg

t , Fg
t+1} output from the

aggregation module of the current stage t and the next stage
t + 1, respectively. Second, we calculate the L2 distances
between the ground and aerial database features output at stage
t and stage t+1, respectively. Note that in the third and fourth
lines of Algorithm 1, Fai j denotes the descriptor of the i th
aerial database image output at the j th stage. Third, we use
the minimum value of the negative softmax top-2 distances
as the confidence measure and calculate the confidence scores
of Fg

t and Fg
t+1. Features with higher confidence scores are

considered more discriminative. Finally, to make a halting
decision, we estimate whether the next refinement step brings
improvement. This is achieved by comparing the descriptor
confidences between every two refinement steps. If the confi-
dence score decreases after the next refinement step, we output
the final descriptor at step t . Otherwise, we repeat the above
process as t increases until t = T − 1.

2) Multiscale Feature Augmentation: A significant chal-
lenge of the ASE is how to measure and compare the discrimi-
native ability of representations. As described above, we adopt
the negative softmax as a metric. In this section, we further
introduce a multiscale feature augmentation technique that can
significantly improve the accuracy of step estimation. The
motivation is to take into account the information at different
scales when comparing adjacent representations since the scale
is a crucial factor affecting feature representation [41], [42].
This enables the ASE to comprehensively compare adjacent
representations at different abstract levels, leading to better
performance of step estimation.

Fig. 6. Extracting multiscale context feature St for multiscale feature
augmentation.

As shown in Fig. 6, we start by extracting several context
features from the refined feature ft at step t via the average
pooling layer followed by a 1 × 1 learnable convolution layer.
Note that the pooling layer has a kernel of shape (Hin −
s(αHin−1)) × (Win−s(αWin−1)) and stride s = �1/α�. As a
result, the output is a context feature of shape α(Hin × Win),
where α is a scale factor ranging between 0 and 1. By setting
three different values of α, we obtain three context features
(S1

t , S2
t , S3

t ) at different scales of αk(Hin × Win), where k ∈
{1, 2, 3}. Then, we aim to fuse (S1

t , S2
t , S3

t ) into a single
multiscale context feature map. To do so, we upsample S1

t , S2
t

and S3
t to the same shape of Hin × (Win/2) and concatenate

them along the channel. Afterward, a global average pooling
operation is performed on the concatenated features with three
convolutional layers to learn the fusion weights. By multiply-
ing the weights and concatenated features element-wisely and
adding the weighted concatenated features along the channel,
we can acquire the multiscale context feature St . Finally,
we augment the output of the first convolutional layer in the
aggregation module by St .

D. Training Objective

During the training phase, we apply a consistent weighted
soft-margin loss, which enforces the same supervision signal
on all refinement blocks. The overall loss function L consists
of T terms, each of which indicates the weighted soft-margin
loss [8] of a specific refinement step. Formally, given a triplet
with a ground image I g , its positive aerial exemplar I a and
a negative aerial exemplar I a∗, the loss function L can be
computed as follows:

L =
T∑

t=1

Lt , Lt = log

(
1+ e

β·
(

d(F g
t ,Fa

t )−d
(

F g
t ,Fa∗

t

)))
(4)

where the hyperparameter β is used to speed up training
convergence, and d indicates the L2 distance. Fg

t , Fa
t , and

Fa∗
t denote the image descriptors of ground image, the positive

aerial image, and the negative aerial image output at stage t ,
respectively.

IV. EXPERIMENT

A. Dataset and Evaluation Protocol

1) Dataset: We evaluate our SIRNet on two widely used
benchmark datasets, CVUSA [4] and CVACT [13]. CVUSA
dataset consists of 35 532 image pairs for training and
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8884 pairs for test. CVACT dataset provides the same number
of image pairs for training, 8884 image pairs for validation,
and 92 802 image pairs with accurate UTM coordinates (i.e.,
geo-tags) for testing. For clarity, we denote the CVACT
validation and test sets as CVACT_val and CVACT_test,
respectively. For CVUSA and CVACT_val, the correct match
of a ground image is a single aerial image covering the same
or wider region, while for CVACT_test, the correct matches
of a query ground image are all aerial images within 5 m of
the ground-truth location of the query image. In the following,
we indicate the geo-localization tasks performed on CVUSA
and CVACT_val as “standard” cross-view geo-localization and
indicate the tasks performed on CVACT_test as “fine-grained”
cross-view geo-localization.

2) Evaluation Protocol: To fairly compare with several
state-of-the-art methods, we follow the evaluation protocol
used in [5], [6], [13], and [15]. Specifically, we compute
the recall accuracy at the top K (r@K for short; K ∈
{1, 5, 10, 1%}), which represents the probability of correct
match(es) ranking within the first K results. For CVUSA,
r@1% indicates the recall accuracy at the top 1% of the test
set, and for CVACT_val and CVACT_test, r@1% indicates
the recall accuracy at the top 1% of CVACT_val.

B. Implementation Details

Our SIRNet is implemented using TensorFlow [43]. During
the training phase, we initialize the parameters of the backbone
network with pretrained weights on ImageNet [44] and ran-
domly initialize the remaining parameters. The overall network
is trained end to end by applying the Adam optimizer [45] with
a learning rate of 1e−5. The dropout rate is set to 0.8. If not
specified, in the IRM, T is empirically set to 3 to achieve a
better trade-off between model complexity and accuracy. In the
multiscale feature augmentation module, the scaling factors α1,
α2, and α3 are set to 0.2, 0.3, and 0.4, respectively. For the
loss function, β is set to 10. Batch size B is set to 32, and
for each ground or aerial image in B positive pairs, there are
B − 1 negative pairs from all the other images, hence totally
producing 2B(B − 1) triplets.

C. Comparison With State-of-the-Art Models

1) Compared Methods: We compare the proposed
SIRNet against 15 state-of-the-art methods on CVUSA [4],
CVACT_val [13], and CVACT_test [13] datasets. For the
compared methods, we directly cite the reported results from
their articles. We choose the seminal works of Workman et
al. [46], Vo and Hays [47], and Zhai et al. [4] that make the
first effort to introduce CNNs to ground-to-aerial matching.
We also compare our method with Siam-FCANet [7], Polar-
SAFA [5] and the works of Liu and Li [13], Zhu et al. [11],
Rodrigues and Tani [23] and Wang et al. [12], which
learn discriminative representations via well-designed
CNN-based models (e.g., incorporating attention mechanisms
or orientation embeddings) or specialized metric learning
techniques (e.g., loss function or data augmentation strategy).
In addition, we select CVM-Net [8], the work of Regmi
and Shah [16], CVFT [15], the work of Zheng et al. [25],

TABLE I

COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON CVUSA [4]
DATASET. THE BEST AND SECOND-BEST RESULTS ARE COLORED

WITH RED AND BLUE, RESPECTIVELY. “PT” INDICATES WHETHER

THE MODEL APPLIES (W/) THE POLAR TRANSFORM [5], [6] TO

AERIAL IMAGES OR NOT (W/O). †: THE METHOD ADOPTS
DATA AUGMENTATIONS DURING THE TRAINING PHASE

Polar-SAFA [5], DSM [6], and the work of Toker et al. [17].
These works are designed to bridge the domain gap between
the ground and aerial images, thus facilitating ground-to-aerial
matching. It is worth mentioning that Polar-SAFA [5] and
DSM [6] introduce a polar transform algorithm (a kind of data
preprocessing technique) to align ground and aerial images
in geometry coarsely. For fair comparisons with Polar-SAFA
and DSM, as mentioned in Section III-A, we apply the polar
transform to aerial images likewise. When comparing with
works [4], [7], [8], [13], [15], [16], [25], [46], [47] that do not
introduce the polar transform, we remove the polar transform
from the SIRNet.

2) Standard Cross-View Geo-Localization: To test our pro-
posed method on the standard cross-view geo-localization task,
we compare the SIRNet with the state-of-the-art methods
on CVUSA [4] and CVACT_val [13] datasets. We report
the representative results (r@1, r@5, r@10 and r@1%) in
Tables I and II and present the complete r@K curves in
Fig. 7(a) and (b). The results show that the SIRNet achieves
significantly higher performance than the compared methods.
In particular, when applying the polar transform, the SIRNet
gets the best performance of 93.74% r@1 on the CVUSA
dataset and 86.02% r@1 on the CVACT_val dataset. When
removing the polar transform, the SIRNet gains impressive
r@1 performance of 81.82% on the CVUSA and 75.37% on
the CVACT_val.

3) Fine-Grained Cross-View Geo-Localization: To examine
the effectiveness of our method in the fine-grained setting,
we compare our method against the advanced approaches on
the CVACT_test dataset [13]. Since the images of CVACT_test
densely cover a city with accurate GPS tags, learning discrim-
inative representations to distinguish between similar-looking
locations plays a crucial role in this task. As shown in
Table III and Fig. 7(c), it is clear that the SIRNet out-
performs the competing methods by a significant margin.
Remarkably, the SIRNet exceeds the second-best method [17]
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Fig. 7. Recall comparison at different values of K of our method versus the state-of-the-art methods on (a) CVUSA [4], (b) CVACT_val [13], and
(c) CVACT_test [13] datasets. “PT” indicates whether the model applies (w/) polar transform [5] or not (w/o). Our models (marked in red) consistently
outperform the competing methods across three datasets.

TABLE II

STANDARD CROSS-VIEW GEO-LOCALIZATION. COMPARISONS WITH
STATE-OF-THE-ART MODELS ON CVACT_VAL [13] DATASET

TABLE III

FINE-GRAINED CROSS-VIEW GEO-LOCALIZATION. COMPARISONS WITH

STATE-OF-THE-ART MODELS ON CVACT_TEST [13] DATASET

at r@1 by 4.26 points when applying the polar transform
while outperforms the second-best method [15] at r@1 by
a margin of 23.62 points without the polar transform. The
results demonstrate the discriminative ability of the features
learned by our models, highlighting the effectiveness of our
method.

D. Ablation Study

1) Overall Ablation Study: To verify the effectiveness of
each proposed component, we present overall ablation studies
on the ASE and the IRM by gradually removing them from
the SIRNet. For a fair comparison, all these variants adopt
the same training setting as the SIRNet. As shown in Fig. 8
and Table IV, combining the network with the ASE and

Fig. 8. Overall ablation studies on the IRM and the ASE on CVUSA,
CVACT_val, and CVACT_test datasets.

TABLE IV

ABLATION STUDIES OF THE IRM AND THE ASE ON CVUSA DATASET

the IRM consistently improves the performance across three
datasets: CVUSA [4], CVACT_val [13], and CVACT_test [13].
Especially on the CVACT_val dataset, incorporating the IRM
brings an improvement of 1.89%, while using the ASE
improves the r@1 performance by a margin of 0.93%. The
results demonstrate the effectiveness of our main contributions.
In Section IV-F1, we provide additional qualitative results
comparing our SIRNet with the baseline. In the following,
we further conduct detailed ablation studies to analyze the
impact of different designs for the IRM and the ASE.

2) Effect of the Maximum Number of Refinement
Steps: In Table V, we study the impact of the maximum
number of refinement steps by changing the numbers
from 1 to 4. It is clear that the performance of the IRM is
positively correlated with the maximum number of refinement
steps when T ≤ 3, while less of an improvement is noted
when T = 4. It is straightforward that setting T to 3 provides
the best trade-off between accuracy and complexity, allowing
the network easier to train with fewer parameters. Therefore,
we use T = 3 as the default choice for the SIRNet.

3) Comparing Three Kinds of Context: The contextual
information used to assist in self-correcting is one of the key
factors in the SIRNet. We also introduce and compare three
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TABLE V

IMPACTS OF THE MAXIMUM NUMBER OF REFINEMENT STEPS IN THE IRM.
THE “T ” ITEM INDICATES THE MAXIMUM NUMBER OF REFINEMENT

STEPS (I.E., THE NUMBER OF REFINEMENT BLOCKS)

TABLE VI

COMPARING THREE KINDS OF CONTEXT USED TO GUIDE THE ITERATIVE

REFINEMENT. THE “CONTEXT” ITEM INDICATES WHICH CONTEXT IS

USED TO ASSIST IN ITERATIVE REFINEMENT

kinds of contextual information, i.e., width-wise, local-wise,
and height-wise context, used to guide refinement in the IRM.
In Section III-B2, we introduce the height-wise context, and
for comparison, here we extract width-wise context features
by replacing the kernel in (1) with a Hin × 1 average pooling
kernel. In addition, Du et al. [48] have indicated that local
features at neighboring spatial positions are semantic relevant
as their receptive fields are highly overlapped. Inspired by
this insight, we explore the local context for each pixel
via the local-wise pooling kernel. Specifically, we replace
the kernel in (1) with an average pooling kernel of shape
(Hin−s(0.3 Hin−1))× (Win−s(0.3 Win−1)) and stride s = 3,
yielding the context feature of shape 0.3(Hin × Win) × Cin.
As shown in Table VI, we can find that three kinds of
contextual information lead to better performance. Moreover,
it is not surprising that due to the distinct structural priors of
scene images, as mentioned in Section III-B2, the height-wise
context-guided IRM outperforms the width-wise and local-
wise context-guided IRMs.

4) Effect of the Dense Connectivity: As mentioned in
Section III-B3, the dense connectivity of the IRM helps to
weaken the negative impact of the aggregation modules at
early refinement steps. To verify this point, we ablate the
dense connectivity and report the ablation results in Table VII.
We can see that with the effective bypassing paths, the dense
connectivity can help increase the network’s performance,
which suggests the effectiveness of the dense connectivity in
our network.

5) Effectiveness of the Multiscale Feature Augmentation:
The multiscale feature augmentation is crucial for the network
to make accurate step estimation since it enables the adjacent
representations to be compared at different abstract levels.
To illustrate this point, in Table VII, we ablate the multiscale
feature augmentation. Results show that, by employing the
multiscale feature augmentation, our network’s performance is
further boosted from 92.96% to 93.74% at r@1, demonstrating
the effectiveness of the multiscale feature augmentation.

E. Effectiveness of Our Method

1) Incorporating With State-of-the-Art Methods: Fig. 9
demonstrates the effect of the step-adaptive iterative

TABLE VII

DETAILED ABLATION STUDIES OF THE DENSE CONNECTIVITY AND
THE MULTISCALE FEATURE AUGMENTATION. THE “DC” AND “MA”

ITEMS REPRESENT WHETHER WE INTRODUCE DENSE CONNEC-
TIVITY AND MULTISCALE FEATURE AUGMENTATION INTO THE

NETWORK, RESPECTIVELY

Fig. 9. Results of combining the proposed modules (the IRM and the ASE)
with the state-of-the-art models.

refinement method by incorporating our proposed modules
(i.e., the IRM and the ASE) with three state-of-the-art mod-
els [5], [6], [15]. Note that we denote the original models as
baseline models in Fig. 9 and insert our modules at the end
of their backbone network. The modified networks are trained
using the same settings as their baselines. From the results,
we can clearly observe that the models incorporated with our
proposed modules gain notable improvements, which demon-
strates the effectiveness and wide applicability of our method.
Significantly, combining the CVFT with our modules outper-
forms the baseline by +5.44%. It is also worth mentioning that
although the Polar-SAFA introduces an attention mechanism
to highlight salient features, combining the Polar-SAFA with
our modules still improves the r@1 performance from 89.84%
to 93.87%. This result implies that the single-step refinement
method of Polar-SAFA may not be optimal for the ground-to-
aerial matching task, and the proposed step-adaptive iterative
refinement method is capable of enhancing the discriminative
capability of the network.

2) Training With Fewer Samples: To further verify our
method’s generalization ability, we additionally evaluate its
performance on few-shot cross-view geo-localization tasks.
The goal of the few-shot task is to learn a model that can
achieve generalization from only a small number of training
examples [49]. This is more challenging than the standard
cross-view geo-localization due to the unreliable empirical
risk of a small number of samples. To support this task,
we randomly select a certain percentage of samples from
the CVUSA dataset [4] and generate four subsets accordingly.
The size of each subset and its corresponding proportion to
the CVUSA dataset are presented in the first two columns of
Table VIII. For each dataset, we train the DSM [6] and our
SIRNet from scratch and report recall accuracies tested on the
original test set. As shown in Table VIII, our SIRNet consis-
tently exceeds the DSM in the few-shot setting. In particular,
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TABLE VIII

FEW-SHOT CROSS-VIEW GEO-LOCALIZATION ON CVUSA DATASET [4].
“# PAIRS” INDICATES THE NUMBER OF TRAINING IMAGE PAIRS SAM-

PLED FROM CVUSA, AND “PROP.” INDICATES THE

PROPORTION OF SAMPLING

Fig. 10. Top-K recall accuracy on the test set with (w/) and without (w/o)
distractor images. The model is trained on SIRNet on the CVUSA dataset.

the r@1 performance of the DSM drops 17.78 points when the
number of training pairs decreases from 35 532 to 7106, while
our SIRNet’s performance at r@1 drops 8.85 points (51%
less than that of the DSM). Furthermore, our SIRNet gains
89.18% at r@1 when training on 14 212 image pairs, which
is competitive with the Polar-SAFA [5] gained by training on
35 532 pairs. The superior results indicate that our SIRNet
can adapt well to the few-shot setting and is more widely
applicable to real-world applications where data are sometimes
scarce.

3) Adding Distractor Images: To evaluate whether our
model is robust to distractor images, we add 8884 aerial
images of the CVACT_val dataset [13] (disjoint with the
CVUSA test set [4]) to the CVUSA test set and report the
results of the SIRNet trained on the CVUSA dataset in Fig. 10.
We find that even with distractor images, the SIRNet achieves
impressive r@1 accuracy of 93.43% (a 0.31% performance
drop). This experimental result demonstrates the stability
and robustness of our proposed network in cross-view geo-
localization task.

4) Comparing With the CBAM: From the perspective of
reweighting features, our step-adaptive iterative refinement
approach can be seen as a kind of attention mechanisms.
To highlight the superiority of our method, we compare our
proposed modules with a well-known attention-based module,
i.e., CBAM [50], which learns spatial and channel attention
masks to highlight salient features. Specifically, we replace
the IRM and the ASE of our SIRNet with the CBAM as a
competing model and train the competing model using the
same settings as our SIRNet for a fair comparison. Then,
we show their differences in Table IX. First, the key difference
to CBAM lies in the step-adaptive iterative nature of our

TABLE IX

COMPARISON BETWEEN THE CBAM AND OUR PROPOSED MODULES.
T INDICATES THE MAXIMUM NUMBER OF REFINEMENT STEPS

Fig. 11. Visualization of the generated features of our SIRNet and the
baseline on the CVUSA [4] dataset.

SIRNet. That is, the refinement process of our SIRNet is car-
ried out in several refinement steps, and the number of refine-
ment steps is specific to each input image. Such a framework
endows the network with the capability of progressive self-
correction, hence leading to better performance. Moreover,
considering the particular structural priors of ground images,
the SIRNet learns an attention mask specifically for each
horizontally divided region. In contrast, the CBAM assigns
different weights to each pixel. As a result, as shown in
Table IX, the CBAM is inferior to the proposed modules
on the CVUSA dataset [4] when the maximum refinement
steps T is set to 1, 2, or 3, suggesting that the step-adaptive
iterative refinement method is better suited for cross-view geo-
localization task.

F. Visualization Analysis

1) Comparing With Baseline: In Fig. 11, we compare our
SIRNet with the baseline network on the CVUSA dataset
by showing their generated heatmaps. Note that the IRM
and the ASE are removed from the SIRNet as the baseline,
and the baseline network is trained using the same settings as
the SIRNet for a fair comparison. By default, we use Grad-
CAM [51] for visualization. We show that our SIRNet is
capable of activating the discriminative regions (e.g., houses)
and depressing the less discriminative regions (e.g., roads)
compared to the baseline network, which indicates the effec-
tiveness of our method.
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Fig. 12. Visualization of the generated features of the SIRNet on CVUSA [4] to verify the progressive self-correcting capability of the SIRNet. First,
we visualize the rough network prediction (denoted as “Input”) and the refined features of the IRM (denoted as “Step 1/2/3”). Second, we show that with the
ASE, the SIRNet is capable of configuring the different number of refinement steps for each input sample (for cases 1, 2, and 3 and 4 and 5, the refinement
steps are automatically set to 1, 2, and 3, respectively). Regions with higher activation values are indicated in yellow. For ease of reference, we box the
discriminative regions and transient occlusions in green and red, respectively.

2) Verifying Our Motivation: We also visualize several
refined feature maps of the IRM to verify whether the SIRNet
has the capability of progressive self-correction. First, it can be
seen in Fig. 12 that through step-adaptive iterative refinements,
our SIRNet can capture more discriminative scene regions.
Specifically, in Fig. 12 (case 1 and 2), our IRM is capable
of highlighting houses even though they are partially shaded
by trees, which enhances the discriminative ability of the
learned features. In Fig. 12 (case 4), the original image
feature map focuses mainly on a transient car that misleads
cross-view matching at first, while our proposed IRM helps
to suppress such interference. Second, in Fig. 12 (case 2)
and Fig. 12 (case 5), we can also observe that the refinement
process is progressive. That is, each stage assigns higher
activation values to discriminative objects than its previous
stage. Third, by presenting output feature maps at different
stages, we also show that our SIRNet can estimate reasonable
refinement steps via our proposed ASE. In summary, the above
results highlight the progressive self-correcting capability of
the proposed SIRNet.

3) Qualitative Results: Fig. 13 shows some quali-
tative ground-to-aerial geo-localization results using the

Fig. 13. Cross-view geo-localization results. These are top-3 retrieval aerial
results of ground queries on CVACT_test dataset. The ground-truth images
are in green boxes.

best-performing model from Table III. For each ground query,
we show its top-3 retrieved aerial images, which are accompa-
nied with Universal Transverse Mercator Grid System (UTM)
coordinates (i.e., the geo-tags). Images highlighted with green
boxes are ground-truth retrieval results. We can see that our
SIRNet is able to find aerial images that cover the same region
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of the ground query images (e.g., the first and second rows),
proving that the SIRNet indeed learns discriminative features.

V. CONCLUSION

In this article, we propose a novel SIRNet for the cross-
view geo-localization task. First, the SIRNet includes an IRM,
which can progressively refine the rough network predictions
in several refinement steps. Second, we also propose an
ASE mechanism, which automatically configures the num-
ber of refinement steps for each input sample. Experimental
results show that our network outperforms the state-of-the-
art methods. We also conduct extensive ablation studies on
the proposed SIRNet to show its superiority. In addition,
by incorporating our module with existing methods, training
our model with fewer samples and adding distractor images
at inference, we verify the wide applicability, generalization
ability, and robustness of our method.

One main limitation of our method is that the ASE mech-
anism comes with additional computational overheads since
it requires computing L2 distances when comparing adjacent
representations. However, the computational costs can be
greatly reduced by employing approximate nearest neighbor
(ANN) [52] search instead of brute-force search. Since faster
search is not the focus of this work, we leave this for future
work.
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